If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12h^2-96h+140=0
a = 12; b = -96; c = +140;
Δ = b2-4ac
Δ = -962-4·12·140
Δ = 2496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2496}=\sqrt{64*39}=\sqrt{64}*\sqrt{39}=8\sqrt{39}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-8\sqrt{39}}{2*12}=\frac{96-8\sqrt{39}}{24} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+8\sqrt{39}}{2*12}=\frac{96+8\sqrt{39}}{24} $
| 29y+21=-20 | | 3x-53=31 | | 6/7d+21=3/5 | | -8x-2=-6/3 | | 13=n+8/2 | | 18x^2-2x+0=0 | | 2•7-9y=14 | | 20+b=-2b-30 | | Y+5x=9x-3 | | Y=-6=0.5x | | 14x-(5x-8)=44 | | -9r=+12=-24 | | 20+b=30-2b | | 62=x-19 | | 5x+6-2(-2x-2)=3(x-2) | | 1/8p=2/32 | | -4(x+3)=20x | | 1|3(x-21)=2|3 | | 189+10x=189 | | -3(n+5)=5 | | 6c+14=-5c+4-9c | | 5=6y;y= | | 69.09+2.24f=178 | | -18x-10=-2 | | 10x-5=17=8x=20=4x | | 15y=9y+12 | | -4(1-8a)-5a=16+7a | | x2-61=20 | | 19=2+d | | 3u=36-6u | | (4y+2/5)-5=8 | | -12x+1=19 |